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ABSTRACT

Deep learning has become the de facto approach in nearly all learning tasks. It
has been observed that deep models tend to memorize and sometimes overfit data,
which can lead to compromises in performance, privacy, and other critical metrics.
In this paper, we explore the theoretical foundations that connect memorization to
various orders of sample loss, i.e., sample loss, sample loss gradient, and sam-
ple loss curvature, focusing on learning dynamics to understand what and how
these models memorize. To this end, we introduce two proxies for memoriza-
tion: Cumulative Sample Loss (CSL) and Cumulative Sample Gradient (CSG).
CSL represents the accumulated loss of a sample throughout training, while CSG
is the gradient with respect to the input, aggregated over the training process.
CSL and CSG exhibit remarkable similarity to stability-based memorization, as
evidenced by considerably high cosine similarity scores. We delve into the the-
ory behind these results, demonstrating that CSL and CSG represent the bounds
for stability-based memorization and learning time. Additionally, we extend this
framework to include sample loss curvature and connect the three orders, namely,
sample loss, sample loss gradient, and sample loss curvature, to learning time and
memorization. The proposed proxy, CSL, is four orders of magnitude less com-
putationally expensive than the stability-based method and can be obtained with
zero additional overhead during training. We demonstrate the practical utility of
the proposed proxies in identifying mislabeled samples and detecting duplicates
where our metric achieves state-of-the-art performance. Thus, this paper provides
a new tool for analyzing data as it scales in size, making it an important resource
in practical applications.

1 INTRODUCTION

Deep learning has become the de facto standard for almost all machine learning tasks from image
(Ho et al., 2020) and text generation (Radford et al., 2019) to classification (Krizhevsky et al., 2009;
Soufleri et al., 2024a) and reinforcement learning (Shakya et al., 2023). While they have been ex-
tremely successful, they tend to memorize and overfit to the training data. While some memorization
is indeed needed to obtain generalization (Feldman, 2020), these deep models can also memorize
totally random images (Zhang et al., 2017). Thus to understand memorization, researchers have put
in significant effort (Zhang et al., 2017; Arpit et al., 2017; Carlini et al., 2019a; Feldman & Vondrak,
2019; Feldman & Zhang, 2020; Feldman, 2020). Such focus is crucial due to the broad implications
of memorization for multiple connected areas, including generalization (Zhang et al., 2021; Brown
et al., 2021), noisy learning (Liu et al., 2020), identifying mislabeled examples (Maini et al., 2022),
recognizing rare and challenging instances (Carlini et al., 2019a), ensuring privacy (Feldman, 2020),
and addressing risks from membership inference attacks (Shokri et al., 2017; Carlini et al., 2022;
Ravikumar et al., 2024b).

Many approaches to study memorization have been proposed (Carlini et al., 2019a; Jiang et al.,
2021; Feldman, 2020). Notably, the stability-based metric proposed by Feldman (2020) measures
the change in expected output probability when the sample under investigation is removed from the
training dataset. This metric offers a robust theoretical framework for understanding memorization,
which was subsequently validated empirically for deep neural networks (Feldman & Zhang, 2020).
However, this approach is impractical for most applications due to its high computational cost.
Recent literature has introduced other proxies for memorization, such as learning time (Jiang et al.,
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Figure 1: Solid lines represent our contributions in this paper, linking various orders of loss–namely,
loss, loss gradient with respect to input, and curvature of loss with respect to input–to memorization
and learning time. The dashed line represents the previously established static link.

2021), adversarial distance (Del Grosso et al., 2022), model confidence (Carlini et al., 2019b), and
input loss curvature (Garg et al., 2024; Ravikumar et al., 2024a). While these proxies have been
successful in understanding the memorization behavior of neural networks, most fail to capture
certain properties of memorization such as bi-modality (Lukasik et al., 2023). Thus, establishing a
strong theoretical foundation of memorization and its proxies is of critical importance.

While prior work has investigated the properties of the loss function, such as input curvature post-
training and its connection to memorization, we establish a theoretical framework that explains how
learning dynamics drive the similarity between the orders of loss (loss, loss gradient w.r.t input
and loss curvature w.r.t input), memorization and learning time. We propose two new proxies for
memorization: Cumulative Sample Loss (CSL) and Cumulative Sample Gradient (CSG) to capture
information from training dynamics. CSL represents the total loss of a sample accumulated over the
entire training process, while CSG is the gradient of the loss with respect to the input, aggregated
throughout training. The proposed CSL proxy is 4 orders of magnitude less computationally expen-
sive than stability-based (Feldman & Zhang, 2020) memorization and ≈ 14× less expensive than
input loss curvature (Garg et al., 2024). It is important to note that the 14× estimate is conservative,
as CSL can be obtained for free during training, making the computational benefits even greater than
these numbers suggest.

We validate our theory with experiments and show that the proposed cumulative metrics have very
high cosine similarity with the memorization score from Feldman & Zhang (2020). Further, we
show that the proposed metrics can be used to identify duplicates and mislabeled examples; no-
tably, the adaptation of our proposed metrics leads to achieving state-of-the-art performance in these
applications. In summary, our contributions are:

• We present a new theoretical framework that links learning dynamics, memorization, and
the three orders of loss (loss, gradient of loss w.r.t input and curvature of loss w.r.t input)
as shown in Figure 1. Specifically, we establish novel connections between sample loss,
sample gradient, and sample curvature, relating them to learning time and memorization.

• We propose two new memorization proxies: Cumulative Sample Loss (CSL) and Cumula-
tive Sample Gradient (CSG). These proxies demonstrate high similarity to stability-based
memorization methods but are significantly more computationally efficient, offering a re-
duction in computational cost by several orders of magnitude.

• We validate our theory through experiments on deep vision models, demonstrating the
efficacy of CSL and CSG as memorization proxies.

• We showcase the practical applications of our metrics in identifying mislabeled examples
and duplicates in datasets, achieving state-of-the-art performance in these tasks.

2 NOTATION AND BACKGROUND

Notation. We denote random variables using bold capital letters V, their instances as italic small
letters v for scalars, v⃗ for vectors, and capital letters V for matrices. For simplicity and compactness,
we ignore the notation when vectors are in the subscript, for example ∇w = ∇w⃗. Consider a learning
problem, where the task is learning the mapping f : x⃗ 7→ y where x⃗ ∼ X ∈ Rn and y ∼ Y ∈ R. A
dataset S = (z⃗1, z⃗2, . . . , z⃗m) ∼ Zm consists of m samples, where each sample z⃗i = (x⃗i, yi) ∼ Z.
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We also use a leave one out set which the the dataset S with the ith sample removed denoted by
S\i = (z⃗1, . . . , z⃗i−1, z⃗i+1, . . . , z⃗m). We use gϕS ∼ GS to denote the function learnt by the neural
network by the application of a possibly random training algorithm A, on the dataset S where ϕ ∼ Φ

denotes the randomness of the algorithm. Let w⃗t
k denote the weights of the kth layer at iteration

t. Consider a single data sample x⃗i = [xi1 xi2 · · · xin]
T represented as a column vector.

Then a dataset or mini-batch with m examples is represented as X = [x⃗1 x⃗2 · · · x⃗m]. A cost
function c : Y ×Y → R+ is used to evaluate the performance of the model. The cost at a sample
z⃗i is referred to as the loss ℓ evaluated at z⃗i, defined as ℓ(g, z⃗i) = c(g(x⃗i), yi). Typically, we are
interested in the loss of g over the entire data distribution, called the population risk, which is defined
as R(g) = Ez[ℓ (g, z⃗)]. Since the data distribution Z is generally unknown, we instead evaluate the
empirical risk as follows Remp(g, S) =

1
m

∑m
i=1 ℓ(g, z⃗i), z⃗i ∈ S.

Error Stability of a randomized algorithm A for some β > 0 is defined as in Kearns & Ron (1997):

∀i ∈ {1, · · · ,m},
∣∣∣Eϕ,z

[
ℓ(gϕS , z)

]
− Eϕ,z

[
ℓ(gϕ

S\i , z⃗)
]∣∣∣ ≤ β, (1)

Memorization of the ith element z⃗i = (x⃗i, yi) in the dataset S by an algorithm A is as:

mem(S, z⃗i) =

∣∣∣∣Prϕ [gϕS(x⃗i) = yi]− Pr
ϕ
[gϕ

S\i(x⃗i) = yi]

∣∣∣∣ (2)

where the probability is taken over the randomness of the algorithm A. We adapt the formulation
from Feldman (2020) to ensure that the score remains positive, aligning with the practical method
used for score calculation.

Input Loss Curvature. Following the curvature notation from prior works (Moosavi-Dezfooli et al.,
2019; Ravikumar et al., 2024a; Garg et al., 2024), input loss curvature is defined as the sum of the
eigenvalues of the Hessian H of the loss with respect to input z⃗i. This can be expressed using the
trace as Curvϕ(z⃗i, S) = tr(H) = tr(∇2

ziℓ(g
ϕ
S , z⃗i)).

L-Bounded Loss. We say that loss a loss function is L-bounded if it satisfies 0 ≤ ℓ ≤ L.

α-adjacency. A dataset S is said to contain α-adjacent elements if it contains two elements zi, zj
such that zj = zi + ϵ for some ϵ ∈ Bp(α) (read as α-Ball). Note that this can be ensured through
construction. Consider a dataset S′ which has no zj s.t zj = zi + ϵ; zj , zi ∈ S′. Then we can
construct S such that S = {z | z ∈ S′} ∪ {zi + ϵ} for some zi ∈ S′, ϵ ∈ Bp(ϵ), ensuring α-
adjacency holds. See additional discussion in Section 4.2.3 on its validity for real applications.

λ-Proximal. Let ℓ(w⃗0) represent the initial training loss. Then, there exists a λ-Proximal itera-
tion Tp if ℓ(w⃗Tp

) = (1 − λ)ℓ(w⃗0) for some λ. In our theoretical framework, we assume that the
optimizer used is Stochastic Gradient Descent (SGD). For conciseness, background information on
SGD, as well as additional background on Lipschitz continuity, uniform model bias, generalization
and bounded gradients, are provided in Appendix A.

3 RELATED WORK

Memorization in deep neural networks has gained attention, with recent works improving our un-
derstanding of its mechanisms and implications (Zhang et al., 2017; Arpit et al., 2017; Carlini et al.,
2019a; Feldman & Vondrak, 2019; Feldman, 2020; Feldman & Zhang, 2020; Maini et al., 2022;
Lukasik et al., 2023; Garg et al., 2024; Ravikumar et al., 2024a). This research is driven by the need
to understand generalization (Zhang et al., 2017; Brown et al., 2021; Zhang et al., 2021), identify
mislabeled examples (Pleiss et al., 2020; Maini et al., 2022), and detect out-of-distribution or rare
sub-populations (Carlini et al., 2019a; Ravikumar et al., 2023). Additionally, memorization impacts
privacy (Dwork et al., 2006; Feldman, 2020; Soufleri et al., 2024b), robustness (Shokri et al., 2017;
Carlini et al., 2022), and unlearning (Kurmanji et al., 2023; Kodge et al., 2024).

Previous studies explored learning dynamics from different angles. Mangalam & Prabhu (2019)
showed that deep networks first learn simple samples, Pruthi et al. (2020) analyzed the influence of
training examples, and Toneva et al. (2019) studied forgetting during training. Maini et al. (2022)
introduced split learning and forgetting times, while Carlini et al. (2019a) combined metrics to study
memorization. Jiang et al. (2021) proposed the C-score, a computationally efficient memorization
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Figure 2: Learning Dynamics: Figure depicts how learning time affects average loss. Average loss
is visualized as dashed line and the loss values are visualized in solid plot. Easy examples are typical
less memorized, hard atypical examples are memorized more.

proxy. More recently, Garg et al. (2024) used input loss curvature as a proxy for stability-based
memorization scores (Feldman, 2020), supported by theoretical analysis in Ravikumar et al. (2024a),
though both focused on post-training analysis. In contrast, this paper investigates input loss curva-
ture, sample loss, and sample loss gradients over training. Thus, providing a broader perspective on
the dynamics of learning and its relation to learning time and memorization.

4 LEARNING DYNAMICS AND MEMORIZATION

4.1 PROPOSED MEMORIZATION PROXIES

To build intuition, let us explore the loss progression of two samples, namely, an “easy” and a “hard”
example, both from the same class (peacock) in the ImageNet dataset (Russakovsky et al., 2015), as
illustrated in Figure 2. In this context, loss refers to the per-sample cross-entropy loss, which tracks
how well the model predicts a specific example at each stage of training.

For the easy sample, learned early in the process, the loss follows a simple pattern: it starts high,
quickly drops, and stays low for the rest of the training. The hard sample, on the other hand, behaves
differently. Its loss remains high for a much longer period before eventually dropping, indicating that
it is learned much later. This contrast in loss dynamics’ patterns evidently shows how the cumulative
per-sample loss throughout training can distinguish between easy and hard examples with precision.

Additionally, the figure demonstrates traditional metrics like learning time and forgetting time,
which rely on thresholds to determine when a sample is learned, may fall short of distinguishing be-
tween easy and hard examples. As we observe in Figure 2, a sample might be learned in one epoch,
unlearned in the next, and then relearned showing that learning is a noisy process. To overcome this
noise, we propose using cumulative sample loss, CSL (or mean sample loss) and cumulative sample
gradient, CSG (or mean sample gradient) as more reliable metrics. These metrics smooth out the
noise from fluctuations in learning. As we will demonstrate, hard examples tend to be memorized by
the model, while easy examples are generalized; the proposed cumulative metrics, tracked through-
out the training process, are key to capturing this correlation. The two proposed metrics CSL and
CSG of a sample z⃗i can be formally defined as:

CSL(z⃗i) =

Tmax∑
t=0

ℓ(w⃗t, z⃗i), CSG(z⃗i) =

Tmax∑
t=0

∥∇z⃗iℓ(w⃗t)∥22 (3)

where Tmax is the total number of iterations of SGD.

4.2 THEORETICAL ANALYSIS

To formalize this intuition, we introduce the concept of the sample learning condition. In opti-
mization theory, the necessary condition for optimality for an unconstrained problem is typically
expressed as ∇ℓ(w) = 0. In the case of optimizers like gradient descent or its extensions, conver-
gence is typically characterized in terms of gradient norm given as ∥∇wℓ(wt)∥2 ≤ τ , where ℓ is the
function to minimize and τ denotes an arbitrarily small threshold. Thus, as a natural extension of
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this perspective, we define the sample learning condition as:

1

T

T−1∑
t=0

∥∇ziℓ(w⃗t)∥22 ≤ τ, (4)

where the gradient is with respect to the sample z⃗i. We interpret Equation 4 as follows: A sample
is considered learned if the average sample loss gradient over the course of training falls below a
certain threshold. Formally a sample is considered learned if the average per iteration gradient norm
falls below a threshold τ . As we will demonstrate, this formulation simplifies the ensuing mathe-
matical expressions and analyses. In our pursuit of formalizing the key role of learning dynamics in
memorization, we first examine the relationship between learning time and cumulative loss. We use
the Stochastic Gradient Descent (SGD) optimizer for our analysis (see Appendix A for background
on SGD). As an intermediate step, it is necessary to first analyze the convergence of the input gradi-
ent, which is discussed in Appendix B as Theorem B.1 due to space constraints in the main body of
the paper. For convenience we group a set of assumptions below.

SGD Convergence Assumptions. The convergence of SGD in gradient norm holds under the L-
Lipschitz continuity of the loss function (Eq. 16), with a bounded gradient norm (Eq. 18) and an
unbiased gradient estimator. Next, we present one of our key theoretical results, formally relating
memorization and sample learning time.

4.2.1 LEARNING TIME LINKS TO CSL AND CSG

Theorem 4.1 (Memorization upper bounds Learning Time). Under the assumptions of SGD conver-
gence, β-stability and L-bounded loss, if stochastic gradient descent (SGD) is performed for Tmax

iterations, with the expected learning time for a reference sample denoted by T̂ref and the loss es-
timation variance given by σl, then with confidence at least 1 − δ, the expected learning time for a
sample z⃗i is bounded by its memorization score.

Eϕ [Ta]− T̂ref ≤
TmaxL

Eϕ [ℓ(w⃗0)]

(
mem(a) +

2β

L
+

2σl

L
√
δ

)
(5)

Sketch of Proof. This proof connects memorization with learning time by analyzing input gradient
convergence using the sample learning condition. It compares the learning times of two samples,
showing that their learning times are proportional to the difference in loss by using the convergence
upper bound established in Theorem B.1. We leverage the result from Ravikumar et al. (2024a) to
link sample’s loss difference to memorization. The proof is available in Appendix E.2.

Interpreting Theory. In the theorem, T̂ref refers to a reference sample that can be chosen so
its learning time is nearly zero. To build intuition we can approximate Eϕ[ℓ(w⃗0)] ≈ L and σl ≈ 0.
Based on these assumptions, the expected learning time is a fraction of the total number of iterations,
Tmax, with this fraction determined by the sample’s memorization score. Thus we can interpret
from the theorem that samples with higher memorization scores take longer to learn, meaning their
expected learning time is directly linked to how much they are memorized.
Theorem 4.2 (Cumulative loss bounds learning time). Let the assumptions for SGD convergence
hold, and let Tmax denote the maximum number of iterations of SGD. Further, assume there exists a
λ-proximal reference sample and loss estimation variance is σl. Then, with a confidence 1− δ, the
learning time Tzi for any sample z⃗i ∈ S follows:

Tzi ≤ Tref
CSL(z⃗i)

λℓ(w⃗0) + ℓ(w⃗ ∗) Tref − σl δ−0.5 Tref
(6)

Sketch of Proof. We leverage an intermediate result from Theorem 4.1, which establishes a relation-
ship between the learning times of two samples and their respective losses. The central step involves
telescoping the loss differences, demonstrating that both the total loss decrease and the cumulative
loss are proportional to the learning time of the sample. The proof is provided in Appendix E.3.

Interpreting Theory. The theorem shows that a sample’s learning time is tied to its CSL, which
tracks the total loss accumulated over time. The learning time is upper-bounded by a fraction of
the reference sample learning time. This theorem captures the intuition that harder samples, with
higher cumulative losses, take longer to learn, while easier samples, with lower cumulative losses,
are learned faster.
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Theorem 4.3 (Cumulative sample gradient bounds learning time). Under the SGD convergence
assumptions, let Tmax denote the maximum number iterations. Assume the loss function satisfies
the µ-PL condition and there exists λ-proximal reference sample. Define M as the product of the
second transformation constant kgw (Result 36) and µ. Under these conditions, the learning time of
a sample z⃗i is bounded by the cumulative sum of the input gradients throughout the training process.

Tzi ≤
MTmax

2λℓ(w⃗0)
CSG(z⃗i) (7)

Sketch of Proof. The proof leverages Theorem 4.2 and the PL condition to bound learning time
using the gradient norm. The transformation result (see result 36) is applied to convert the weight
gradient norm to the sample gradient norm. The full proof is provided in Appendix E.4.

Interpreting Theory. This theorem establishes a linear relationship between learning time and the
proposed metric, CSG, demonstrating that the upper bound on learning time is linearly related to
the input gradient. The upper bound is a fraction of the total iterations, Tmax, where the fraction is
determined by the ratio of CSG to the initial loss, scaled by the input-weight gradient transformation
constant, the PL constant µ, and the loss bound parameter on a reference sample.

4.2.2 MEMORIZATION LINKS

Theorem 4.4 (Memorization bounds Cumulative Loss). Assume the loss function is L-bounded, and
the assumptions for the convergence of SGD hold. Additionally, let the error stability condition (Eq.
1) be satisfied. Then, with confidence 1 − δ, the memorization mem(S, z⃗i) of any sample z⃗i ∈ S
satisfies the following inequality:

C5 (CSL(z⃗i)− C6 + C7) ≤ mem(S, z⃗a), C5 =

(
3L2

Eϕ [ℓ(w⃗0)]
− L

)−1

(8)

C6 = T̂ref ℓ(w⃗
∗), C7 =

(
β −

3L2

Eϕ [ℓ(w⃗0)]
− 3L−

(
1 +

6L

Eϕ [ℓ(w⃗0)]

)
σl√
δ

)
(9)

Sketch of proof. We start with Equation 33, which relates the learning time and loss difference of
two samples, z⃗i and z⃗b = z⃗ref . Using the stability assumption and bound on the gradients, the proof
derives lower bounds on the loss over multiple iterations. These bounds incorporate memorization
terms from Theorem 4.1 and use Chebyshev’s inequality to account for variance in loss estimation.
Finally, the proof concludes by showing that memorization of sample can be bounded using con-
stants that depend on the properties of the loss function and stability. The full proof is available in
Appendix E.7.

Discussion. This theorem provides an upper bound on CSL by utilizing memorization, showing
that CSL has a linear relationship with memorization. To build intuition around this result, we can
interpret C6 as representing a lower bound on the cumulative loss at each step, meaning the term
CSL− C6 measures how far the cumulative loss at each step is from this lower bound. C7 accounts
for the total estimation error, while C5 is a scaling factor that adjusts the result to the appropriate
range.
Theorem 4.5 (Input Gradient bounds Memorization). Let the assumptions of error stability 1, gen-
eralization 14, and uniform model bias 15 hold and assume the that the loss is L-bounded and
satisfies L-Lipschitz. Further assume the dataset is α-adjacent. Then with probability at least 1− δ

mem(S, z⃗i) ≤ C3 + C4 Eϕ

[
∥∇ℓ(gϕ

S\i , zi)∥
]

(10)

C3 =
mβ

L
+

(4m− 1)γ

L
+

2(m− 1)∆

L
+

L
2L

∥α∥2, C4 =
∥α∥
L

(11)

Sketch of Proof. The proof uses stability and generalization assumptions, showing that the dif-
ference in loss when a sample is removed from the training set is influenced by the loss gradient.
By applying the Lipschitz continuity of the loss function, the proof concludes that memorization is
proportional to the gradient norm. Thus, the larger the gradient at the end of training for a sample,
the more it is likely memorized during training. Full proof available in Appendix E.6.
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Interpreting Theory. This theorem establishes a connection between memorization and the sample
gradient at the end of training, demonstrating that the sample gradient serves as an upper bound on
sample memorization. The theorem predicts a linear relationship between memorization and the
sample gradient. The constants in this linear relationship include the stability term β, the model bias
term ∆, the generalization term γ, as well as the Lipschitz constant and the sample ball parameter α
(i.e., there exist two samples within an α-ball of each other).

4.2.3 LEARNING TIME, CSG AND SAMPLE CURVATURE

Theorem 4.6 (Input Curvature bounds Input Gradient which bounds Learning Time). Assume that
the convergence assumptions for SGD hold, and that the loss function satisfies the µ-PL condition.
Additionally, assume that the Hessian of the loss is ρ-Lipschitz continuous, and the gradient variance
is bounded by σ2. Furthermore, assume the dataset contains a λ-proximal sample. Under these
conditions, the learning time for a sample z⃗i is limited by the gradient of the input, which is itself
bounded by the input curvature as follows

Tzi ≤
MTmax

2λℓ(w⃗0)

Tzi
−1∑

t=0

∥∇Xℓ(wt)∥22 ≤ C1 + C2

Tzi
−1∑

t=0

∥∇2
Xℓ(wt)∥ (12)

C1 =
η2kgΓ

3ρMT 2
max

12λℓ(w⃗0)
+

MTmaxkg

2λη
, C2 =

ηkgkh(σ
2 + Γ2)MTmax

2λℓ(w⃗0)
(13)

Sketch of Proof. The proof leverages the Lipschitz continuity of the Hessian to bound the change in
loss during gradient descent, involving both gradient and curvature terms. Summing over iterations
shows that the cumulative gradient is bounded by the cumulative curvature, thus bounding the total
learning time. The full proof in available in Appendix E.5.

Interpreting Theory. This theorem establishes a link between learning time, CSG, and cumulative
sample curvature. It shows that learning time is bounded by CSG, which in turn is bounded by
cumulative sample curvature. The theorem implies that CSG provides a tighter bound on learning
time than sample loss curvature. This is supported by the mislabel detection performance of CSG
compared to cumulative sample curvature, as demonstrated in the Experiment Section 5.3.

Remark on Assumptions. We briefly and qualitatively evaluate the practicality of our assump-
tions. Prior work (Hardt et al., 2016) has demonstrated that models trained using stochastic gradient
methods, such as stochastic gradient descent, exhibit low generalization error. Furthermore, it has
been established that these methods are uniformly stable (Hardt et al., 2016), supporting the plau-
sibility of our assumptions on stability (Equation 1) and generalization (Equation 14). Model bias
is an intrinsic characteristic of the model itself, and it is reasonable to assume a uniform bound
across different datasets. Virmaux & Scaman (2018) have provided a general upper bound for the
Lipschitz constant of any differentiable deep learning model, validating the Lipschitz continuity as-
sumption in the context of deep models. The assumptions of an unbiased gradient estimator, along
with bounded gradient norm and variance, are widely used in the optimization literature (Lian et al.,
2017; Aketi et al., 2024), making these assumptions reasonable. In practice, loss functions are often
upper-bounded, supporting the validity of the bounded loss assumption. Finally, α-adjacent dataset
can be guaranteed by design. However, in practice, this may not be necessary since the size of the
ball Bp(α) is unrestricted. Therefore, two samples from the same class that are ‘similar’ might
suffice to meet this criterion.

Key Theory Takeaways. (1) Learning time exhibits a linear relationship with all three metrics (i.e.,
orders of loss). (2) Stability-based memorization also follows this linear relationship with the three
metrics. (3) Additionally, learning time and memorization are linearly related. (4) Loss serves as
the most compute-efficient proxy among the proxies considered for measuring memorization.

5 EXPERIMENTS

5.1 VALIDATING THEORY

In this section, we conduct experiments to empirically validate the theoretical relationships estab-
lished in the paper. Specifically, we investigate the following connections: (1) the relationship
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Figure 3: Learning time vs
CSL and CSG on CIFAR-100
dataset.

Figure 4: Memorization score
vs CSL and CSG on CIFAR-
100 dataset.

Figure 5: Learning time vs
memorization and input loss
curvature on CIFAR-100.

between learning time and the three metrics—CSL (Cumulative Sample Loss), CSG (Cumulative
Sample Gradient), and Cumulative Input Loss Curvature, and (2) the relationship between memo-
rization, CSL, CSG, and learning time.

Experiment. We train a ResNet18 model (He et al., 2016) on the CIFAR-100 dataset (Krizhevsky
et al., 2009), calculating learning time, CSL, CSG, and cumulative input loss curvature for each
sample in the training set. For memorization scores, we utilize the precomputed stability-based
memorization scores from Feldman & Zhang (2020). We plot a binned scatter plot of these metrics
(see Appendix C.4 for more details on the setup).

Results. The results are visualized in Figures 8, 9 and 10. Figure 8 plots the CSL and CSG vs
learning time. Figure 9 plots the the memorization score for CIFAR-100 from Feldman & Zhang
(2020) vs CSL and CSG. And finally Figure 10 plots learning time vs memorization and cumulative
input loss curvature.

Takeaways. Our theoretical results, particularly Theorems 4.1 - 4.6, predict a linear relationship
between learning time, memorization, and the three orders of loss—loss, loss gradient, and loss
curvature. The experimental results, as visualized in Figures 8, 9 and 10 empirically confirm these
linear relationships. The slight non-linearity observed between learning time and memorization is
likely due to the assumption of bounded loss in the theoretical framework, whereas the cross-entropy
loss used in practice does not have a uniform bound across all subpopulations (see Ravikumar et al.
(2024a) for a similar discussion).

5.2 SIMILARITY WITH MEMORIZATION

Experiment. In this section, we examine how well our proposed proxies–CSL, CSG, and loss
curvature–correlate with the memorization score defined by Feldman & Zhang (2020). We con-
duct this experiment by training ResNet18 models on both CIFAR-100 and ImageNet datasets. For
each dataset, we compute the memorization proxies and measure their cosine similarity with the
memorization scores publicly made available by Feldman & Zhang (2020). This setup mirrors the
approach used in Garg et al. (2024). Please see Appendix C.1 for additional setup details.

Results. The results are presented in Table 1, which shows the cosine similarity between the proxies
and the Top-K memorized examples, as well as all examples. “Top 5K” refers to selecting the 5000
most memorized examples based on Feldman & Zhang (2020), and the cosine similarity for these
examples is reported. The table compares three metrics: CSL, CSG, and curvature (Garg et al.,
2024). For CIFAR-100, CSL emerges as the best proxy, while for ImageNet, it ranks a close second.
Interestingly, for ImageNet, the most memorized examples exhibit a stronger correlation with the
CSG. Across all samples on ImageNet, curvature has a very slight advantage over CSL.

Takeaways. CSL serves as the best proxy for CIFAR-100 and effectively captures memorization for
both ImageNet’s top-K examples and the entire dataset. Additionally, CSL proves to be highly com-
putationally efficient, as it is available without extra computation during training. In comparison,
it is approximately 14× faster than curvature and 4 orders of magnitude faster than stability-based
memorization, making it an attractive option for practical use (see Appendix C.3 for detailed com-
pute cost breakdown). Additional results on various architectures (see Appendix C.2) show that
these results are consistent across different network architectures.
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Dataset Samples
Cosine Sim. w/ Mem.

Metric
CSL CSG ∇2ℓ

CIFAR-100
Top 5K 0.94 0.86 0.90

All 0.88 0.77 0.82

ImageNet
Top 50K 0.92 0.94 0.87

All 0.71 0.68 0.72

Table 1: Cosine similarity match with
FZ scores for CIFAR-100 and Ima-
geNet.

Figure 6: 32 highest scores for CSL (left) and CSG (right)
on clean CIFAR-100 reveal conflicting labels, such as Baby
and Girl or Crab and Spider outlined in red.

Dataset Method 1% Noise 2% Noise 5% Noise 10% Noise

CIFAR-10

Learning Time (LT) 0.4951 ± 0.0248 0.4954 ± 0.0044 0.4911 ± 0.0071 0.4948 ± 0.0057
In Conf. (Carlini et al., 2019a) 0.8781 ± 0.0177 0.8072 ± 0.0130 0.7254 ± 0.0214 0.6528 ± 0.0042

CL (Northcutt et al., 2021) 0.8651 ± 0.0127 0.8905 ± 0.0115 0.8874 ± 0.0019 0.8551 ± 0.0030
SSFT (Maini et al., 2022) 0.9626 ± 0.0018 0.9551 ± 0.0020 0.9498 ± 0.0042 0.9360 ± 0.0020
Curv. (Garg et al., 2024) 0.9715 ± 0.0045 0.9776 ± 0.0033 0.9800 ± 0.0003 0.9819 ± 0.0006

CSL (Ours) 0.9845 ± 0.0026 0.9864 ± 0.0004 0.9870 ± 0.0003 0.9869 ± 0.0005
CSLT (Ours) 0.9501 ± 0.0427 0.9528 ± 0.0401 0.9433 ± 0.0509 0.9274 ± 0.0689
CSG (Ours) 0.9681 ± 0.0054 0.9754 ± 0.0029 0.9783 ± 0.0009 0.9809 ± 0.0011

CIFAR-100

Learning Time (LT) 0.5256 ± 0.0012 0.5227 ± 0.0100 0.5161 ± 0.0051 0.5203 ± 0.0029
In Conf. (Carlini et al., 2019a) 0.7258 ± 0.0102 0.7236 ± 0.0047 0.7069 ± 0.0069 0.6884 ± 0.0053

CL (Northcutt et al., 2021) 0.8723 ± 0.0208 0.8838 ± 0.0006 0.8733 ± 0.0010 0.8536 ± 0.0006
SSFT (Maini et al., 2022) 0.8915 ± 0.0045 0.8893 ± 0.0013 0.8784 ± 0.0030 0.8664 ± 0.0024
Curv. (Garg et al., 2024) 0.9856 ± 0.0009 0.9865 ± 0.0011 0.9876 ± 0.0021 0.9892 ± 0.0012

CSL (Ours) 0.9891 ± 0.0003 0.9895 ± 0.0002 0.9895 ± 0.0001 0.9897 ± 0.0001
CSLT (Ours) 0.9846 ± 0.0059 0.9857 ± 0.0049 0.9860 ± 0.0045 0.9865 ± 0.0041
CSG (Ours) 0.9880 ± 0.0007 0.9888 ± 0.0004 0.9896 ± 0.0008 0.9904 ± 0.0006

Table 2: Evaluating the performance of mislabeled detection of the proposed framework against
existing methods on CIFAR-10 and CIFAR-100 datasets under various levels of label noise.

5.3 MISLABELED DETECTION

Experiment. In this section, we leverage insights from our theoretical framework to develop a prac-
tical method for detecting mislabeled examples in training datasets. We evaluate the effectiveness
of our approach by comparing it to several state-of-the-art methods for label error detection. The
experiments are conducted on CIFAR-10 and CIFAR-100, where varying levels of symmetric label
noise are introduced. Specifically, labels are randomly flipped to another class, uniformly across all
classes, excluding the true label. To assess performance, we employ the Area Under the Receiver
Operating Characteristic (AUROC) metric, which measures the ability of each method to correctly
identify mislabeled examples under different noise conditions. Additional details of the experiments
and the baseline techniques are available in Appendix C.1 and C.5.

Results. The results are presented in Table 2, showcasing the performance of each method on
CIFAR-10 and CIFAR-100 at symmetric label noise levels of 1%, 2%, 5%, and 10%. The term
LT (Learning Time) refers to the first epoch at which a sample is correctly classified (Jiang et al.,
2021; Maini et al., 2022), reflecting the epoch at which the model learns a particular sample. This is
contrasted with CSLT (Cumulative Sample Learning Time), which represents the cumulative count
of epochs during which the sample is correctly predicted, essentially tracking the learning dynamics
over time. The results in Table 2 clearly indicate that incorporating learning dynamics significantly
improves performance in detecting mislabeled examples.

Takeaways. On CIFAR-10, the proposed CSL proxy consistently outperforms other methods in
detecting mislabeled examples. However, on CIFAR-100, as the noise level increases, the gradient
proxy, CSG gradually surpasses CSL in performance. This shift can be explained by the increased
complexity in identifying mislabeled examples at higher noise levels, where higher-order informa-
tion, such as gradients, becomes crucial for accurately detecting label errors.

Compute Cost. Compared to other techniques, CSL and CSG incur zero additional computational
overhead. In contrast, Confidence Learning denoted as CL (Northcutt et al., 2021) requires training
multiple (k-fold) models, with 3-folds used in this case, significantly increasing the computational
cost. SSFT (Maini et al., 2022) requires training at least two subsets of the original training set,
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Figure 7: Using the proposed metric (CSG)
uncovers a bias in the FMNIST dataset:
darker clothing with lower contrast is often
identified as high CSG (i.e. harder).

Method CIFAR-10 CIFAR-100

LT 0.7029 ± 0.0058 0.7419 ± 0.0059
In Conf. 0.9237 ± 0.0114 0.8623 ± 0.0131

CL 0.5533 ± 0.0031 0.5873 ± 0.0090
SSFT 0.8490 ± 0.0034 0.7938 ± 0.0045
Curv. 0.9536 ± 0.0030 0.9639 ± 0.0030

CSL (Ours) 0.9821 ± 0.0006 0.9886 ± 0.0008
CSG (Ours) 0.9496 ± 0.0022 0.9715 ± 0.0028
CSLT (Ours) 0.9680 ± 0.0034 0.9870 ± 0.0005

Table 3: Result of duplicate detection using the pro-
posed methods and other baselines on CIFAR-10
and CIFAR-100 datasets.

approximately doubling the training cost relative to standard training. Input loss curvature is com-
putationally expensive, requiring about 14 times more compute than CSL. Methods such as LT
(Learning Time), CSLT (Cumulative Sample Learning Time), CSG and CSL are roughly equivalent
in terms of computational cost (CSG has a larger memory footprint). Therefore, CSL emerges as
the most efficient method, providing the best balance between compute cost and performance.

5.4 DUPLICATE DETECTION

Experiment. In this section, we apply the proposed memorization proxies to identify duplicate ex-
amples in the dataset. We conduct two types of analysis: first, a qualitative analysis of duplicate
detection on the unmodified CIFAR-100 dataset; second, a quantitative experiment where we inten-
tionally introduce duplicates (250 duplicates) into the dataset and use our proxies to identify them.
We use a ResNet18 (He et al., 2016) model for this experiment, and the performance of our method
is evaluated against other techniques using the AUROC metric (see Appendix C.1 for setup details).

Results. The qualitative analysis results are presented in Figure 6, which demonstrates the detection
of duplicates in the clean CIFAR-100 dataset. The quantitative experimental results are provided in
Table 3, where we report the AUROC scores for our method compared to other techniques.

Takeaways. As shown in Figure 6, both CSL and CSG effectively identify the majority of duplicates
in the unmodified CIFAR-100 dataset. This is further validated in Table 3, where we evaluate the
performance of the method after intentionally introducing duplicates. Here, we observe that CSL
consistently achieves the best performance in identifying duplicates across both the CIFAR-10 and
CIFAR-100 datasets.

Note on Hard Examples. Additionally, the proposed metrics demonstrate the capability to identify
unintended biases within the dataset. This is illustrated in Figure 7, where the CSG metric is applied
to the FashionMNIST (Xiao et al., 2017) dataset. The figure visualizes images with low and high
CSG values, revealing that images with high CSG scores, which are learned later during training,
tend to be darker and have lower contrast. The poor performance or increased difficulty in learning
such images may not accurately reflect real-world distributions. To improve reproducibility, we have
provided the code for all the experiments in the supplementary material.

6 CONCLUSION

This paper provides a comprehensive theoretical framework that connects memorization proxies,
such as input loss curvature, cumulative sample loss, and cumulative sample gradient, to learning
dynamics and stability-based memorization. Our results demonstrate that these proxies are not only
highly effective in capturing memorization behavior but also computationally efficient, being four
orders of magnitude faster than existing stability-based metrics. We validate our framework through
extensive experiments and show its practical applications in identifying mislabeled examples, bias,
and duplicates in datasets. The proposed metrics achieve state-of-the-art performance in identifying
duplicate and mislabeled examples. By offering efficient tools to understand memorization, our
framework can lead to more interpretable models across a wide range of machine learning tasks.
Ultimately, this work paves the way for more scalable, accurate, and data-centric approaches in the
deployment of deep learning models in real-world applications.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Sai Aparna Aketi, Abolfazl Hashemi, and Kaushik Roy. Global update tracking: A decentralized
learning algorithm for heterogeneous data. Advances in neural information processing systems,
36, 2024.

Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxin-
der S Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A closer
look at memorization in deep networks. In International conference on machine learning, pp.
233–242. PMLR, 2017.

Gavin Brown, Mark Bun, Vitaly Feldman, Adam Smith, and Kunal Talwar. When is memorization
of irrelevant training data necessary for high-accuracy learning? In Proceedings of the 53rd
annual ACM SIGACT symposium on theory of computing, pp. 123–132, 2021.
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APPENDIX

A ADDITIONAL BACKGROUND

In this section we provide a brief description of useful concepts used in the paper.

Generalization. An algorithm A generalizes with confidence δ and rate γ′(m) if:

Pr[|Remp(g, S)−R(g)| ≤ γ′(m)] ≥ δ. (14)

Uniform Model Bias. The hypothesis gϕS learnt from applying algorithm A to learn the true condi-
tional f = E[y|x⃗] is said to have a uniform bound on model bias given by ∆ if:

∀S ∼ Zm,
∣∣∣Eϕ[R(gϕS)−R(f)]

∣∣∣ ≤ ∆. (15)

L-Lipschitz Gradient. The gradient of the loss function ℓ is said to be L-Lipschitz continuous on
Z if, for all z⃗1, z⃗2 ∈ Z, there exists a constant L > 0 such that:

∥∇z1ℓ(z⃗1)−∇z2ℓ(z⃗2)∥ ≤ L∥z⃗1 − z⃗2∥ (16)

ρ-Lipschitz Hessian. The Hessian of ℓ is said to be ρ-Lipschitz continuous on Z if, for all z⃗1, z⃗2 ∈ Z
and for all S, g ∈ Zm,GS where GS = Range(A(S)), there exists some ρ > 0 such that:

∥∇2
z1ℓ(g, z⃗1)−∇2

z2ℓ(g, z⃗2)∥ ≤ ρ∥z⃗1 − z⃗2∥. (17)

Bounded Gradient. Suppose that for each iteration t, the expected cubic norm of the gradient with
respect to the parameters w⃗t

k is bounded by a constant Γ3, i.e.,

Et

[
∥∇̃wk

t
ℓ(w⃗t

k)∥32
]
≤ Γ3, (18)

µ-PL (Polyak-Łojasiewicz) Condition. Consider a function f , which is smooth and needs to be
minimized without constraints. Assume there exists at least one minimizer w⃗∗ (not necessarily
unique). Even if f is not convex, it satisfies the Polyak-Łojasiewicz (PL) condition if there exists a
constant mu > 0 such that:

1

2
∥∇wℓ(w⃗)∥22 ≥ µ [ℓ(w⃗)− ℓ(w⃗∗)] (19)

Loss Estimation Variance σl. In practical applications, empirical loss is often approximated using
a finite set of samples. Specifically, we estimate the expected loss as follows:

Ez[ℓ(w⃗, z)] ≈
1

M

M∑
i=1

ℓ(w⃗, z⃗i) (20)

The variance of this approximation from the true expected loss is referred to as the loss estimation
variance, denoted by σl.

Stochastic Gradient Descent (SGD). In stochastic gradient descent (SGD), the model parameters
(or weights) w⃗t at iteration t are updated based on the gradient of the loss function ℓ(w⃗t, z⃗i) with
respect to the parameters, evaluated using a mini-batch or a single random sample z⃗i from the
dataset. The general update rule for SGD is given by:

w⃗t+1 = w⃗t − ηt∇̃w⃗ℓ(w⃗t, z⃗i) (21)

Where ηt is the learning rate at iteration t, ∇̃w⃗ℓ(w⃗t, z⃗i) is the unbiased stochastic gradient estimator
of the loss function with respect to w⃗t, and w⃗t denotes the model’s weights at iteration t.

SGD Convergence Lemma. The following lemma describes the convergence behavior for non-
convex functions:

14
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Lemma A.1 (SGD Convergence for Non-Convex Functions). Let ℓ(w⃗) be a non-convex and L-
smooth loss function, meaning that ℓ(w⃗) has Lipschitz continuous gradients. Assume the learning
rate ηt = η is constant. Then, after T iterations, the average squared gradient norm satisfies:

1

T

T−1∑
t=0

E
[
∥∇w⃗ℓ(w⃗t)∥2

]
≤ ℓ(w⃗0)− ℓ(w⃗∗)

Tη
+

LηΓ2

2
(22)

Where ℓ(w⃗0) is the initial loss, ℓ(w⃗∗) is the optimal (or minimum) loss, L is the Lipschitz constant
of the gradient (smoothness parameter), Γ2 is the variance of the stochastic gradients, T is the total
number of iterations, and η is the constant learning rate.

This lemma indicates that as T increases, the expected norm of the gradient diminishes, meaning
that the algorithm converges to a stationary point where the gradient is small. The convergence rate
depends on the learning rate η and the variance of the stochastic gradients.

B CONVERGENCE IN INPUT GRADIENT NORM

Theorem B.1 (Convergence in input gradient norm). Let ktg > 0 be a constant relating the input
and weight gradients, as established in Lemma D.1, and define κt = (ktg)

2 and ΣT =
∑T−1

t=0 (ktg)
2.

Then, under the SGD convergence assumptions, after T iterations of SGD with a learning rate η,
the following holds:

T−1∑
t=0

∥∇Xℓ(w⃗t)∥22 ≤
T−1∑
t=0

κt

η
Et [ℓ(w⃗t)− ℓ(w⃗t+1)] +

ηLΓ2ΣT

2
(23)

Sketch of Proof. The proof of input gradient convergence assumes the loss function is L-Lipschitz
and the stochastic gradient estimates are unbiased. Thus, typical SGD analysis, e.g. Bubeck et al.
(2015), can be used to upper bound the weight gradient’s norm. Using a transformation lemma
(Lemma D.1), the proof relates the weight gradient to the input gradient while incurring a scaling
factor that depends on kg . By telescoping the result over iterations, it follows that the cumulative
input gradient is bounded by the cumulative loss decrease and a term depending on the learning rate
and Lipschitz constant (see proof in Appendix E.1).

Discussion. This theorem establishes the convergence of the sample gradient norm when using
stochastic gradient descent (SGD). It shows that the input gradient converges in a manner similar to
the weight gradient, with an additional dependence on the scaling factor κt, which is determined by
the weight norm. Moreover, the convergence is bounded by the suboptimality gap ℓ(w⃗0) − ℓ(w⃗T ),
as well as by the Lipschitz continuity of the loss function and the learning rate η.

C EXPERIMENTAL DETAILS

C.1 SETUP

Datasets. We use CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009) and ImageNet (Russakovsky
et al., 2015) datasets. For experiments that use memorization scores, we use the pre-computed
stability-based memorization scores from Feldman & Zhang (2020) which have been made publicly
available by the authors.

Architectures. For all of experiments we train ResNet18 (He et al., 2016) models from scratch,
expect for the cross architecture results in Table 4, where we train VGG16, MobileNetV2 and In-
ception (small inception as used by (Feldman & Zhang, 2020)). All the architectures used the same
training recipe as described below.

Training. When training models on CIFAR-10 and CIFAR-100 the initial learning rate was set
to 0.1 and trained for 200 epochs. The learning rate is decreased by 10 at epochs 120 and 180.
When training on CIFAR-10 and CIFAR-100 datasets the batch size is set to 128. We use stochastic
gradient descent for training with momentum set to 0.9 and weight decay set to 1e-4. For both

15
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CIFAR-10 and CIFAR-100 datasets, we used the following sequence of data augmentations for
training: resize (32×32), random crop, and random horizontal flip, this is followed by normalization.
For ImageNet we trained a ResNet18 for 200 epochs with the same setting except the resize random
crop was set to 224× 224.

Testing. During testing no augmentations were used, i.e. we used resize followed by normalization.
To improve reproducibility, we have provided the code in the supplementary material.

C.2 SIMILARITY WITH MEMORIZATION SCORES ACROSS ARCHITECTURES

Experiment. In this section, we present the results of measuring the cosine similarity between the
proposed memorization proxies (CSL, CSG) and the memorization score from Feldman & Zhang
(2020) across different architectures. Specifically, we tested VGG (Simonyan & Zisserman, 2014),
MobileNetV2 (Sandler et al., 2018), and Inception (Szegedy et al., 2016).

Results. The results are shown in Table 4, which reports the cosine similarity between the CSL
and CSG metrics and the memorization score for the three architectures on the CIFAR-100 dataset.
These models were trained using the methodology described in Section C.1.

Takeaways. The results indicate that the top 5K (i.e., the similarity between the metrics and the top
5000 most memorized samples according to Feldman & Zhang (2020)) is highly consistent across
architectures, and the overall match across the dataset is also quite high for CSL. However, two key
observations are worth noting: (1) VGG16 shows a lower correlation on the ‘All’ category, and (2)
CSG performs worse than CSL, similar to the findings for ResNet18 in the main paper.

Architecture Samples CSL CSG

VGG16
Top 5K 1.00 0.98

All 0.61 0.60

MobileNetV2
Top 5K 0.95 0.94

All 0.73 0.65

Inception
Top 5K 0.97 0.95

All 0.70 0.64

Table 4: Cosine similarity between stability-based memorization score with CSL and CSG for dif-
ferent architectures on CIFAR-100 for Top 5K and all samples.

C.3 COMPUTE COST ANALYSIS

In this section, we provide a detailed analysis of the computational cost of the proposed proxies in
comparison to other techniques. We assume the cost of one forward pass through a neural network
is F , and consequently, the cost of a backpropagation step is 2F , making the total cost for one
forward-backward pass 3F . Using previously defined notation, let m represent the dataset size and
T the total number of training epochs.

Stability-Based Memorization. Feldman & Zhang (2020) trained between 2,000 and 10,000
models to compute the stability-based memorization score. Thus, the total computational cost is
10, 000 · 3F · T ·m.

Cumulative Sample Curvature. Garg et al. (2024) trained a single model and proposed using
sample curvature averaged over training to estimate memorization. Hutchinson’s trace estimator was
employed to calculate curvature, which requires 2 forward passes and 1 backward pass, repeated n
times over the entire dataset for each epoch. While their results show that n ranges from 2 to 10,
we use n = 2 to provide the computational advantage in their favor, even though n = 10 produces
better results. Thus, the total cost consists of the training and curvature computation.

Cost = 3F · T ·m+ 4F · T ·m · n
= 3F · T ·m+ 4F · T ·m · 2
= 11F · T ·m
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If n = 10 is used for optimal results, as reported in Tables 2 and 3, the total computational cost
becomes 43F · T ·m.

CSL and CSG (Ours). Both CSL and CSG can be obtained without additional computational cost
during training. Therefore, the only cost is that of the training process, which is 3F · T · m. The
computational cost comparison is summarized in Table 5.

Method Absolute Cost Relative Cost
Stability-Based (Feldman & Zhang, 2020) 6000FTm− 30, 000FTm 2, 000×− 30, 000 ×

Cumulative Sample Curvature (Garg et al., 2024) 11FTm− 43FTm 3.6×− 14.33 ×
CSL and CSG (Ours) 3FTm 1 ×

Table 5: Summary of the compute cost of the proposed metric compared to existing methods.

C.4 ADDITIONAL DETAILS ON VALIDATING THEORY EXPERIMENTS

For the experiments described in Section 5.1, we provide additional details regarding the methodol-
ogy. To generate the graphs in Figures 8, 9 and 10 we collected all relevant metrics for each sample
in the dataset and grouped them into bins based on the x-axis metric in each figure. For instance, in
Figure 8 samples were binned based on their learning time. Similarly, in Figure 9 , we binned sam-
ples based on their memorization scores as defined in Feldman & Zhang (2020) and and in Figure
10, the samples were again binned by learning time.

C.5 ADDITIONAL DETAILS ON MISLABELLED DETECTION EXPERIMENTS

In this section, we provide additional details regarding the setup for mislabel detection experiments.
For all experiments, we trained the models using the training procedure outlined in Appendix C.1.

Learning Time. Learning time is defined as the first epoch at which the sample was
correctly learned. For example, if a sample’s correct predictions during training were
[0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1], the learning time would be epoch 3.

In Confidence. In-confidence (Carlini et al., 2019a) is calculated as 1 - “the predicted probability”
of the true class.

Confident Learning. For the implementation of confident learning (Northcutt et al., 2021),
we utilized the cleanlab library, which is available at https://github.com/cleanlab/
cleanlab. We applied 3-fold cross-validation to compute out-of-sample probability scores for
the samples. These probability scores were then input into the cleanlab implementation to generate
the results reported.

SSFT. Second Split Forgetting Time (SSFT) (Maini et al., 2022) is measured using two subsets, Set
1 and Set 2. A model is first trained on Set 1 and subsequently fine-tuned on Set 2, during which we
measure how quickly a sample from Set 1 is misclassified or “forgotten”. This process is repeated

Figure 8: Learning time vs
CSL and CSG on CIFAR-100
dataset.

Figure 9: Memorization score
vs CSL and CSG on CIFAR-
100 dataset.

Figure 10: Learning time vs
memorization and input loss
curvature on CIFAR-100.

Figure 11: Validating theoretical results of the proposed proxies on deep vison models trained on
CIFAR-10 and CIFAR-100, with error bar.
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for both subsets to cover the entire dataset. Specifically, after training on Set 1 and measuring the
forgetting time for samples in Set 1 during fine-tuning on Set 2, the model is then trained on Set 2,
and the forgetting time for Set 2 is measured during fine-tuning on Set 1.

CSLT. Cumulative Sample Learning Time (CSLT) can be considered as the cumulative sample loss,
where the loss is a binary 0 − 1 loss. For example, consider a sample’s correct predictions during
training over 12 epochs in this case. Let the correct predictions be [0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1].
Then CSLT would be calculated as ‘Total Epochs’ - ‘No. of ones’ = 12 − 7 = 5, representing the
total number of incorrect predictions (represented by 0s).

Curvature. To calculate the curvature of a sample, we used the technique described in Garg et al.
(2024). The hyperparameters were set to n = 10 and h = 0.001, following the same configuration
as outlined by Garg et al. (2024).

D RELATING INPUT AND WEIGHT GRADIENT, HESSIAN

D.1 GRADIENT

We want to analyze the gradient of the loss function with respect to the input X , denoted as
∇Xℓ(X,Y ), and relate it to the gradient with respect to the weights of the first layer, ∇W1

ℓ(X,Y ),
considering X as a fat matrix (more features than samples a.k.a under determined).
Lemma D.1 (Input gradient norm bound by weight gradient norm). For any neural network with
input X , the norm of the gradient of the loss function with respect to the input X is bounded by
the product of the norm of the gradient with respect to the weights of the first layer, the norm of the
pseudo-inverse of X , and the norm of the weight matrix W1. Formally,

∥∇Xℓ(X,Y )∥F ≤ kg∥∇W1ℓ(X,Y )∥F (24)

where kg =
∥WT

1 ∥F ∥(XT )+∥F
sX

.

Proof:

∇Xℓ(X,Y ) = ∇Ŷ ℓ(X,Y )∇H Ŷ ∇XH

= WT
1 WT

2 ∇Ŷ ℓ(X,Y )⊙ σ′(H)

= WT
1 WT

2 ∇Ŷ ℓ(X,Y )⊙ σ′(W1X) (25)

Similarly for the gradient w.r.t to W1 we have

∇W1
ℓ(X,Y ) = ∇Ŷ ℓ(X,Y )∇H Ŷ ∇W1

H

= WT
2 ∇Ŷ ℓ(X,Y )⊙ σ′(H) XT

= WT
2 ∇Ŷ ℓ(X,Y )⊙ σ′(W1X) XT (26)

From Equations 25 and 26 we have:

WT
1 ∇W1

ℓ(X,Y ) = ∇Xℓ(X,Y )XT (27)

WT
1 ∇W1

ℓ(X,Y )(XT )+ = ∇Xℓ(X,Y )XT (XT )+

∥WT
1 ∇W1ℓ(X,Y )(XT )+∥F = ∥∇Xℓ(X,Y )XT (XT )+∥F

Let sX denote the smallest singular value of P = XT (XT )+

∥WT
1 ∥F ∥∇W1ℓ(X,Y )∥F ∥(XT )+∥F ≥ ∥∇Xℓ(X,Y )XT (XT )+∥F

∥WT
1 ∥F ∥∇W1ℓ(X,Y )∥F ∥(XT )+∥F ≥ ∥∇Xℓ(X,Y )XT (XT )+∥F ≥ sX∥∇Xℓ(X,Y )∥F

Thus we have

∥∇Xℓ(X,Y )∥F ≤
∥WT

1 ∥F ∥(XT )+∥F
sX

∥∇W1
ℓ(X,Y )∥F

∥∇Xℓ(X,Y )∥F ≤ kg∥∇W1ℓ(X,Y )∥F ■
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D.2 HESSIAN

Lemma D.2 (Input Hessian norm bound by weight Hessian norm). If the assumption of ρ-Lipschitz
of the loss function holds, then for any neural network with input X , the norm of the Hessian of the
loss function with respect to the input X is bounded by the norm of the Hessian with respect to the
weights of the first layer, the norm of the pseudo-inverse of X , and the norms of the weight matrices.
Formally,

∥∇2
W1

ℓ(X,Y )∥F ≤ kh∥∇2
Xℓ(X,Y )∥F (28)

where kh =
1

sW1sW+
1

∥(WT
1 )+∥2F ∥XT ∥2F

Proof

∇Xℓ(X,Y ) = WT
1 WT

2 ∇Ŷ ℓ(X,Y )⊙ σ′(W1X)

We rewrite this using Einstein notation since the Hessian that we will be dealing with are 4D tensor.

(∇Xℓ(X,Y ))ij = (WT
1 )ik(W

T
2 )kl(∇Ŷ ℓ(X,Y ))ljσ

′(W1X)kj

Now we consider ∇2
X

∇2
Xℓ(X,Y ) = WT

1

(
WT

2 ∇X∇Ŷ ℓ(X,Y )⊙ σ′(W1X)
)

+WT
1

(
WT

1 WT
2 ∇Ŷ ℓ(X,Y )⊙ σ′′(W1X)

)
= WT

1

(
WT

2 ∇H∇Ŷ ℓ(X,Y )∇XH ⊙ σ′(W1X)
)

+WT
1

(
WT

1 WT
2 ∇Ŷ ℓ(X,Y )⊙ σ′′(W1X)

)
= T1 + T2 (29)

Rewriting in Einstein Notation we have

(T1)ijkl = (WT
1 )im(WT

1 )jn(W
T
2 )ko(∇H∇Ŷ ℓ(X,Y ))mnopσ

′(W1X)pl

(T2)ijkl = (WT
1 )im(WT

1 )jn(W
T
1 )ql(W

T
2 )ko(∇Ŷ ℓ(X,Y ))mnopσ

′′(W1X)pq

Now we consider ∇2
W1

∇2
W1

ℓ(X,Y ) =
(
WT

2 ∇W1
∇Ŷ ℓ(X,Y )⊙ σ′(W1X)

)
XT

+
(
WT

2 ∇Ŷ ℓ(X,Y )⊙
(
σ′′(W1X)XT

))
XT

=
(
WT

2 ∇H∇Ŷ ℓ(X,Y )∇W1
H ⊙ σ′(W1X)

)
XT

+
(
WT

2 ∇Ŷ ℓ(X,Y )⊙
(
σ′′(W1X)XT

))
XT

=
(
WT

2 ∇H∇Ŷ ℓ(X,Y )XT ⊙ σ′(W1X)
)
XT

+
(
WT

2 ∇Ŷ ℓ(X,Y )⊙
(
σ′′(W1X)XT

))
XT

=
(
WT

2 ∇H∇Ŷ ℓ(X,Y )⊙ σ′(W1X)
)
XTXT

+
(
WT

2 ∇Ŷ ℓ(X,Y )⊙
(
σ′′(W1X)XT

))
XT

= T3 + T4 (30)

Rewriting in Einstein Notation we have

(T3)ijkl = (WT
2 )ko(∇H∇Ŷ ℓ(X,Y ))mnopσ

′(W1X)pq(X
T )ql(X

T )ij

(T4)ijkl = (WT
2 )ko(∇Ŷ ℓ(X,Y ))mnopσ

′′(W1X)pq(X
T )ql(X

T )ij

Using Equations 29 and 30 we have

(WT
1 )ia(W

T
1 )jb(∇2

W1
ℓ(X,Y ))abkl = (∇2

Xℓ(X,Y ))ijkl(X
T )km(XT )ln

WT
1 WT

1 ∇2
W1

ℓ(X,Y ) = ∇2
Xℓ(X,Y )XTXT

(WT
1 )+(WT

1 )+WT
1 WT

1 ∇2
W1

ℓ(X,Y ) = (WT
1 )+(WT

1 )+∇2
Xℓ(X,Y )XTXT
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Note the two (WT
1 )+ are across different axes

∥(WT
1 )+(WT

1 )+WT
1 WT

1 ∇2
W1

ℓ(X,Y )∥F = ∥(WT
1 )+(WT

1 )+∇2
Xℓ(X,Y )XTXT ∥F

∥(WT
1 )+(WT

1 )+WT
1 WT

1 ∇2
W1

ℓ(X,Y )∥F ≤ ∥(WT
1 )+(WT

1 )+∥F ∥∇2
Xℓ(X,Y )∥F ∥XTXT ∥F

sW1
sW+

1
∥∇2

W1
ℓ(X,Y )∥F ≤ k′h∥∇2

Xℓ(X,Y )∥F

∥∇2
W1

ℓ(X,Y )∥F ≤
k′h

sW1
sW+

1

∥∇2
Xℓ(X,Y )∥F

∥∇2
W1

ℓ(X,Y )∥F ≤ kh∥∇2
Xℓ(X,Y )∥F ■
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E LEARNING DYNAMICS

E.1 INPUT GRADIENT CONVERGENCE

Proof of Theorem B.1

Assumptions:

• Assume that the loss function ℓ is L-Lipschitz.

• Assume that the gradient estimator ∇̃wℓ is unbiased i.e., Et[∇̃wℓ(w⃗t)] = ∇wℓ(w⃗t)

• Assume bounded gradient as stated in Assumption 18.

Proof

Let w⃗t
1 denote the vector of the first-layer weight parameters at the tth iteration. For simplicity,

we slightly abuse the notation by using w⃗t = w⃗t
1 and ∇w = ∇w⃗t

throughout the paper for ease of
reference. Using the L-Lipschitz assumption on the loss, for any vectors w⃗t and w⃗t+1, the function
ℓ satisfies the quadratic upper bound:

ℓ(w⃗t+1) ≤ ℓ(w⃗t) + ⟨∇wℓ(w⃗t), w⃗t+1 − w⃗t⟩+
L
2
∥w⃗t − w⃗t+1∥22

Based on the assumptions, the stochastic gradient descent (SGD) lemma provides the following
result for two consecutive iterates w⃗t and w⃗t+1 produced by the SGD algorithm:

Et[ℓ(w⃗t+1)] ≤ ℓ(w⃗t)− η∥∇w⃗ℓ(w⃗t)∥22 +
L
2
η2Et[∥∇̃w⃗ℓ(w⃗t)∥22]

where η > 0 is the step size of the algorithm. For stochastic gradient descent with learning rate η
and bounded gradient as defined in Assumption 18 we a have

∥∇wℓ (w⃗t)∥22 ≤
1

η
(Et [ℓ (w⃗t)− ℓ (w⃗t+1)]) +

ηLΓ2

2

(ktg)
2∥∇wℓ (w⃗t)∥22 ≤ (ktg)

2 1

η
(Et [ℓ (w⃗t)− ℓ (w⃗t+1)]) +

(ktg)
2ηLΓ2

2
Multiply by (ktg)

2

∥∇Xℓ (w⃗t)∥22 ≤ (ktg)
2 1

η
(Et [ℓ (w⃗t)− ℓ (w⃗t+1)]) +

(ktg)
2ηLΓ2

2
Using Lemma D.1

Telescoping the result for T iterations

T−1∑
t=0

∥∇Xℓ (w⃗t)∥22 ≤
1

η

(
T−1∑
t=0

(ktg)
2 Et [ℓ (w⃗t)− ℓ (w⃗t+1)]

)
+

ηLΓ2
∑T−1

t=0 (ktg)
2

2

Let (ktg)
2 = κt and ΣT =

∑T−1
t=0 (ktg)

2, then we have the result

T−1∑
t=0

∥∇Xℓ (w⃗t)∥22 ≤
T−1∑
t=0

κt

η
Et [ℓ (w⃗t)− ℓ (w⃗t+1)] +

ηLΓ2ΣT

2
■

E.2 LEARNING TIME AND MEMORIZATION

Proof of Theorem 4.1

Assumptions:

• Assume that the loss function ℓ is L-Lipschitz.

• Assume that the gradient estimator ∇̃wℓ is unbiased i.e., Et[∇̃wℓ(w⃗t)] = ∇wℓ(w⃗t)

• Assume bounded gradient as stated in Assumption 18.
• Assume loss is bounded 0 ≤ ℓ ≤ L

• Assume loss variance is σl
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Proof

Using the sample learning condition from Equation 4 we have:

1

T

T−1∑
t=0

∥∇Xℓ(w⃗t)∥22 ≤ τ

For our analysis it is easier to analyze the results with a minor modification to Theorem B.1 by
setting κm = maxt∈{1,··· ,T} κt. Then we have

T−1∑
t=0

∥∇Xℓ(w⃗t)∥22 ≤ κm

η

T−1∑
t=0

Et [ℓ(w⃗t)− ℓ(w⃗t+1)] +
κmηLΓ2T

2

1

T

T−1∑
t=0

∥∇Xℓ(w⃗t)∥22 ≤ κm

Tη

T−1∑
t=0

Et [ℓ(w⃗t)− ℓ(w⃗t+1)] +
κmηLΓ2

2
(31)

The threshold for learning a sample from Equation 31 is given by

τ =
κm

Tη

T−1∑
t=0

Et [ℓ(w⃗t)− ℓ(w⃗t+1)] +
κmηLΓ2

2

Consider two samples a, b then for both a and b to be learnt, let Ta and Tb represent the learning
time for a and b respectively. Then if both samples are learnt τa = τb =⇒

τa = τb (32)

κm

Taη

Ta−1∑
t=0

Et [ℓ(w⃗t)− ℓ(w⃗t+1)] +
κmηLΓ2

2
=

κm

Tbη

Tb−1∑
t=0

Et [ℓ(w⃗t)− ℓ(w⃗t+1)] +
κmηLΓ2

2

κm

∑Ta−1
t=0 Et [ℓ(w⃗t)− ℓ(w⃗t+1)]

Taη
=

κm

∑Tb−1
t=0 Et [ℓ(w⃗t)− ℓ(w⃗t+1)]

Tbη

Tb

Ta∑
t=0

Et [ℓ(w⃗t)− ℓ(w⃗t+1)] = Ta

Tb∑
t=0

Et [ℓ(w⃗t)− ℓ(w⃗t+1)]

Tb Et [ℓ(w⃗Ta)− ℓ(w⃗0)] = Ta Et [ℓ(w⃗Tb
)− ℓ(w⃗0)] (33)

Et [ℓ(w⃗0)] (Ta − Tb) = Ta Et [ℓ(w⃗Tb
)]− Tb Et [ℓ(w⃗Ta

)] (34)

Let ℓ\a denote the loss of the model when a was removed from the training set i.e. the training set
is S\a. Let w⃗∗ denote the optimal for S\a. If we add and subtract this from Equation 34 we have

Et [ℓ(w⃗0)] (Ta − Tb) = Ta Et

[
ℓ(w⃗Tb

)− ℓ\b(w⃗∗)
]
− Tb Et

[
ℓ(w⃗Ta)− ℓ\a(w⃗∗)

]
− Taℓ

\b(w⃗∗) + Tbℓ
\a(w⃗∗)

Et [ℓ(w⃗0)] (Ta − Tb) = Ta Et

[
ℓ(w⃗Tb

)− ℓ\b(w⃗∗)
]
− Tb Et

[
ℓ(w⃗Ta

)− ℓ\a(w⃗∗)
]

− Taℓ
\b(w⃗∗) + Tbℓ

\a(w⃗∗)

Now we take the expectation over the randomness of the algorithm ϕ ∼ Φ.

Eϕ [ℓ(w⃗0)(Ta − Tb)] = Eϕ [Ta]Eϕ

[
ℓ(w⃗Tb

)− ℓ\b(w⃗∗)
]
− Eϕ [Tb]Et,ϕ

[
ℓ(w⃗Ta)− ℓ\a(w⃗∗)

]
− Eϕ

[
Taℓ

\b(w⃗∗) + Tbℓ
\a(w⃗∗)

]
Observe that

Et,ϕ

[
ℓ(w⃗Tb

)− ℓ\b(w⃗∗)
]
= Eϕ

[
ℓ(w⃗Tb

)− ℓ\b(w⃗∗)
]

since the term does not depend on t. Furthermore, note that Eϕ

[
ℓ(w⃗Tb

)− ℓ\b(w⃗∗)
]

corresponds
to the memorization metric as defined by Feldman (2020), expressed in terms of loss, see proof in
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A.3 from Ravikumar et al. (2024a). We denote Eϕ [Ta] = T̂a. To ensure the correct sign of the
memorization score, we assume ℓ\b(w⃗∗) ≥ ℓ(w⃗Tb

), as optimizing the loss for a data point included
in the training set should result in a loss that is lower than or equal to the loss when the data point
is excluded. Thus ℓ(w⃗Tb

) − ℓ\b(w⃗∗) ≤ 0, since mem(b) ≥ 0, we must adjust the sign accordingly.
Additionally the losses are for all the samples. To convert them to memorization scores we assume
that the loss can be estimated using the sample of interest with a variance σl. Thus using Chebyshev’s
inequality we have can state with a confidence 1− δ:

Eϕ [ℓ(w⃗0)(Ta − Tb)] ≤ −T̂aLmem(b)−
(
−T̂bLmem(a)

)
+ Eϕ

[
−Taℓ

\b(w∗) + Tbℓ
\a(w∗)

]
+

2Tmaxσl√
δ

Eϕ [ℓ(w⃗0)(Ta − Tb)] ≤ −T̂aLmem(b) + T̂bLmem(a) + Eϕ

[
Tbℓ

\a(w⃗∗)− Taℓ
\b(w⃗∗)

]
+

2Tmaxσl√
δ

Eϕ [ℓ(w⃗0)(Ta − Tb)]

≤ T̂bLmem(a)− T̂aLmem(b) + Eϕ

[
Taℓ

\a(w⃗∗)− Taℓ
\b(w⃗∗)

]
+

2Tmaxσl√
δ

Assume Ta > Tb

Eϕ [ℓ(w⃗0)(Ta − Tb)] ≤ T̂bLmem(a)− T̂aLmem(b) + Eϕ [Taℓ(w⃗
∗)− Taℓ(w⃗

∗) + 2Taβ] +
2Tmaxσl√

δ

Eϕ [ℓ(w⃗0)(Ta − Tb)] ≤ 2TmaxLmem(a) + 2Tmaxβ +
2σl√
δ

Eϕ [ℓ(w⃗0)(Ta − Tref )] ≤ TmaxLmem(a) + Tmax

(
2β +

2σl√
δ

)
Eϕ [Ta − Tref ] ≤

TmaxL

Eϕ [ℓ(w⃗0)]

(
mem(a) +

2β

L
+

2σl

L
√
δ

)

Eϕ [Ta]− T̂ref ≤
TmaxL

Eϕ [ℓ(w⃗0)]

(
mem(a) +

2β

L
+

2σl

L
√
δ

)
■

E.3 LEARNING TIME AND MEAN SAMPLE LOSS

Proof of Theorem 4.2

Assumptions:

• Assume that the loss function ℓ is L-Lipschitz.

• Assume that the gradient estimator ∇̃wℓ is unbiased i.e., Et[∇̃wℓ(w⃗t)] = ∇wℓ(w⃗t)

• Assume bounded gradient as stated in Assumption 18.
• Assume for some λ, ℓ(w⃗Tref

) = (1− λ)ℓ(w⃗0).
• Assume loss variance is σl

Proof

We assume a trivial lower bound on E[ℓ(w⃗t)] ≥ ℓ(w⃗∗)

Consider Equation 33

Tza Et

[
ℓ(w⃗0)− ℓ(w⃗Tzb

)
]
= Tzb Et

[
ℓ(w⃗0)− ℓ(w⃗Tza

)
]

Let Tb = Tref

TzaλEt [ℓ(w⃗0)] = Tref Et

[
ℓ(w⃗0)− ℓ(w⃗Tza

)
]

23
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Telescope the term on the right

Tref E
[
ℓ(w⃗0)− ℓ(w⃗Tza

)
]
= Tref

Tza−1∑
t=0

E [ℓ(w⃗t)− ℓ(w⃗t+1)]

We split the sum into two parts:

Tref

Tza−1∑
t=0

Et [ℓ(w⃗t)− ℓ(w⃗t+1)] = Tref

Tza−1∑
t=0

Et [ℓ(w⃗t)]−
Tza−1∑
t=0

E [ℓ(w⃗t+1)]


Using the lower bound on Et[ℓ(w⃗t+1)] we have

Tref

Tza−1∑
t=0

Et [ℓ(w⃗t)− ℓ(w⃗t+1)] ≤ Tref

Tza−1∑
t=0

Et [ℓ(w⃗t)]− Tzaℓ(w⃗
∗)


Using this in Equation 33 we get

TzaλEt [ℓ(w⃗0)] ≤ Tref

Tza−1∑
t=0

E [ℓ(w⃗t)]− Tzaℓ(w⃗
∗)


Grouping Tza terms we have

Tza (λEt [ℓ(w⃗0)] + Tref ℓ(w⃗
∗)) ≤ Tref

Tza−1∑
t=0

Et [ℓ(w⃗t)]

We can estimate ℓ(w⃗t) using Ezi [ℓ(w⃗t, zi)]. Assume the variance of the loss estimate is σl. By
Chebyshev’s inequality, for any δ > 0, with probability at least 1− δ:

ℓ(w⃗t) ≤ ℓ(w⃗t, z⃗i) +
σl√
δ

Using this we have

Tza (λEt [ℓ(w⃗0)] + Tref ℓ(w⃗
∗)) ≤ Tref

Tza−1∑
t=0

[
ℓ(w⃗t, z⃗a) +

σl√
δ

]

Tza (λEt [ℓ(w⃗0)] + Tref ℓ(w⃗
∗)) ≤ Tref

Tza−1∑
t=0

[ℓ(w⃗t, z⃗a)] + TrefTza

σl√
δ

Tza (λEt [ℓ(w⃗0)] + Tref ℓ(w⃗
∗)) ≤ Tref CSL(z⃗a) + TrefTza

σl√
δ

Tza

(
λEt [ℓ(w⃗0)] + Tref ℓ(w⃗

∗)− Tref
σl√
δ

)
≤ Tref CSL(z⃗a)

Thus we have

Tza ≤
Tref CSL(z⃗a)(

λEt [ℓ(w⃗0)] + Tref ℓ(w⃗∗)− Tref
σl√
δ

)
Tza ≤

CSL(z⃗a)

λℓ(w⃗0)

Tref
+ ℓ(w⃗∗)−

σl√
δ

■

E.4 GRADIENT AND LEARNING TIME

Proof of Theorem 4.3

Assumptions:
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• Assume that the loss function ℓ is L-Lipschitz.

• Assume that the gradient estimator ∇̃wℓ is unbiased i.e., Et[∇̃wℓ(w⃗t)] = ∇wℓ(w⃗t).
• Assume bounded gradient as stated in Assumption 18.
• Assume for some λ, ℓ(w⃗Tref

) = (1− λ)ℓ(w⃗0).
• Assume the loss ℓ satisfies µ-PL condition.

Proof

Using Equation 27 we have:

WT
1 ∇W1

ℓ(X,Y ) = ∇Xℓ(X,Y )XT

(WT
1 )+WT

1 ∇W1
ℓ(X,Y ) = (WT

1 )+∇Xℓ(X,Y )XT

∥(WT
1 )+WT

1 ∇W1ℓ(X,Y )∥F = ∥(WT
1 )+∇Xℓ(X,Y )XT ∥F

∥(WT
1 )+WT

1 ∇W1
ℓ(X,Y )∥F ≤ ∥(WT

1 )+∥F ∥∇Xℓ(X,Y )∥F ∥XT ∥F
sW ∥∇W1

ℓ(X,Y )∥F ≤ ∥(WT
1 )+∥F ∥∇Xℓ(X,Y )∥F ∥XT ∥F

Let sW be the smallest singular value of (WT
1 )+WT

1

sW ∥∇W1ℓ(X,Y )∥F ≤ k′gw∥∇Xℓ(X,Y )∥F (35)

∥∇W1
ℓ(X,Y )∥F ≤ kgw∥∇Xℓ(X,Y )∥F (36)

Let ℓ satisfy µ-PL condition then we have:
1

2
∥∇W1ℓ(w⃗)∥22 ≥ µ [ℓ(w⃗)− ℓ(w⃗∗)]

k2gw
1

2
∥∇W1

ℓ(w⃗)∥22 ≥ k2gwµ [ℓ(w⃗)− ℓ(w⃗∗)]

1

2
∥∇Xℓ(w⃗)∥22 ≥ M [ℓ(w⃗)− ℓ(w⃗∗)] (37)

Now summing this over time we have

1

2

T−1∑
t=0

∥∇Xℓ(wt)∥22 ≥ M
T−1∑
t=0

[ℓ(wt)− ℓ(w∗)] (38)

Now consider Equation 33
Ta Et [ℓ(w⃗0)− ℓ(w⃗Tb

)] = Tb Et [ℓ(w⃗0)− ℓ(w⃗Ta
)]

Telescope the term on the right

Ta Et [ℓ(w⃗0)− ℓ(w⃗Tb
)] = Tb

Ta−1∑
t=0

Et [ℓ(w⃗t)− ℓ(w⃗t+1)]

Ta Et [ℓ(w⃗0)− ℓ(w⃗Tb
)] ≤ Tb

Ta−1∑
t=0

Et [ℓ(w⃗t)− ℓ(w⃗∗)] (39)

≤
MTb

2

Ta−1∑
t=0

∥∇Xℓ(w⃗t)∥22

≤
MTmax

2

Ta−1∑
t=0

∥∇Xℓ(w⃗t)∥22

Consider a reference sample Tref = Tb, then

Ta Et [ℓ(w⃗0)− ℓ(w⃗Tb
)] ≤

MTmax

2

Ta−1∑
t=0

∥∇Xℓ(w⃗t)∥22

Ta ≤
MTmax

2Et

[
ℓ(w⃗0)− ℓ(w⃗Tref

)
] Ta−1∑

t=0

∥∇Xℓ(w⃗t)∥22

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Assume for some λ, ℓ(w⃗Tref
) = (1− λ)ℓ(w⃗0) is true, then we have

Ta ≤
MTmax

2λEt [ℓ(w⃗0)]

Ta−1∑
t=0

∥∇Xℓ(w⃗t)∥22

Ta ≤
MTmax

2λℓ(w⃗0)

Tmax−1∑
t=0

∥∇Xℓ(w⃗t)∥22 ■

E.5 TRAINING DYNAMICS OF CURVATURE

Proof of Theorem 4.6

Assumptions:

• Assume that the loss function ℓ is L-Lipschitz.
• Assume that the Hessian is ρ-Lipschitz.

• Assume that the gradient estimator ∇̃wℓ is unbiased i.e., Et[∇̃wℓ(w⃗t)] = ∇wℓ(w⃗t).
• Assume bounded gradient as stated in Assumption 18.
• Assume for some λ, ℓ(w⃗Tref

) = (1− λ)ℓ(w⃗0).
• Assume the loss ℓ satisfies µ-PL condition.

• Assume bounded gradient variance Et[∥∇̃w1
ℓ(w⃗1)−∇w1

ℓ(w⃗1)∥2] ≤ σ2

Proof

If Lipschitz assumption 17 on the Hessian of ℓ holds from Nesterov & Polyak (2006) we have

∥ℓ(g, w⃗2)− ℓ(g, w⃗1)− ⟨∇w1
ℓ(g, w⃗1), w⃗2 − w⃗1⟩ − ⟨∇2

w1
ℓ(g, w⃗1)(w⃗2 − w⃗1), w⃗2 − w⃗1⟩∥

≤
ρ

6
∥w⃗2 − w⃗1∥3 (40)

Only considering the upper bound we have:

ℓ(w⃗2)− ℓ(w⃗1)− ⟨∇w1
ℓ(w⃗1), w⃗2 − w⃗1⟩ − ⟨∇2

w1
ℓ(w⃗1)(w⃗2 − w⃗1), w⃗2 − w⃗1⟩ ≤

ρ

6
∥w⃗2 − w⃗1∥3

we can rewrite it as:

ℓ(w⃗2) ≤
ρ

6
∥w⃗2 − w⃗1∥3 + ℓ(w⃗1) + ⟨∇w1

ℓ(w⃗1), w⃗2 − w⃗1⟩+ ⟨∇2
w1

ℓ(w⃗1)(w⃗2 − w⃗1), w⃗2 − w⃗1⟩

With SGD we have the update equation given by w⃗2 = w⃗1 − η∇̃ℓ(w⃗1), using this in the previous
step we get:

ℓ(w⃗2) ≤
η3ρ

6
∥∇̃w1

ℓ(w⃗1)∥3 + ℓ(w⃗1)− η⟨∇w1
ℓ(w⃗1), ∇̃w1

ℓ(w⃗1)⟩+ η2⟨∇2
w1

ℓ(w⃗1)∇̃w1
ℓ(w⃗1), ∇̃w1

ℓ(w⃗1)⟩

Taking the expectation over t, we get:

Et[ℓ(w⃗2)− ℓ(w⃗1)]

≤η3ρ

6
Et[∥∇̃w1ℓ(w1)∥3]− ηEt[⟨∇ℓ(w1), ∇̃ℓ(w⃗1)⟩] + η2 Et[⟨∇2ℓ(w⃗1)∇̃w⃗1

ℓ(w⃗1), ∇̃w1ℓ(w⃗1)⟩]

For ease of writing we split the upper bound into three terms.

1. First term: Et[∥∇̃w1
ℓ(w⃗1)∥3]. Given Assumption 18 we have Et[∥∇̃w1

ℓ(w⃗1)∥3] ≤ Γ3

2. Second term: Et[⟨∇w1ℓ(w⃗1), ∇̃w1ℓ(w⃗1)⟩]. Since Et[∇̃w1ℓ(w1)] = ∇w1ℓ(w⃗1), we have

Et[⟨∇w1
ℓ(w⃗1), ∇̃w1

ℓ(w⃗1)⟩] = ∥∇w1
ℓ(w⃗1)∥2

3. Third term: Et[⟨∇2
w1

ℓ(w⃗1)∇̃w1
ℓ(w⃗1), ∇̃w1

ℓ(w⃗1)⟩]

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Using the formula for the expectation of a quadratic form involving the Hessian:

E[JTAJ] = tr(AΣ) + µTAµ,

where J = ∇̃ℓ(w⃗1), A = ∇2ℓ(w⃗1), µ = ∇ℓ(w⃗1), and Σ is the covariance matrix of ∇̃w1ℓ(w⃗1).

Given Et[∇̃w1
ℓ(w⃗1)] = ∇w1

ℓ(w⃗1) and the variance bound Et[∥∇̃w1
ℓ(w⃗1) − ∇w1

ℓ(w⃗1)∥2] ≤ σ2,
we get:

Et[⟨∇2
w1

ℓ(w⃗1)∇̃w1
ℓ(w⃗1), ∇̃w1

ℓ(w⃗1)⟩] = tr(∇2
w1

ℓ(w⃗1)Σ) +∇w1
ℓ(w⃗1)

T∇2
w1

ℓ(w⃗1)∇w1
ℓ(w⃗1)

≤ ∥∇2
w1

ℓ(w⃗1)∥tr(Σ) + ∥∇w1
ℓ(w⃗1)∥2∥∇2

w1
ℓ(w⃗1)∥

≤ ∥∇2
w1

ℓ(w⃗1)∥σ2 + ∥∇2
w1

ℓ(w⃗1)∥∥∇w1
ℓ(w⃗1)∥2

≤ ∥∇2
w1

ℓ(w⃗1)∥(σ2 + ∥∇w1
ℓ(w⃗1)∥2)

Substituting these results back into the original inequality:

Et[ℓ(w⃗2)− ℓ(w⃗1)] ≤
η3Γ3ρ

6
− η∥∇w1ℓ(w⃗1)∥2 + η2∥∇2

w1
ℓ(w⃗1)∥(σ2 + ∥∇w1ℓ(w⃗1)∥2)

Grouping the terms

Et[ℓ(w⃗2)− ℓ(w⃗1)] ≤
η3Γ3ρ

6
− (η − η2∥∇2

w1
ℓ(w⃗1)∥)∥∇w1

ℓ(w⃗1)∥2 + η2∥∇2
w1

ℓ(w⃗1)∥σ2

Let ∆ℓt = ℓ(w⃗t+1)− ℓ(w⃗t). Summing this inequality over T iterations, we get:

T−1∑
t=0

Et[∆ℓt] ≤
T−1∑
t=0

(
η3Γ3ρ

6
− (η − η2∥∇2

wt
ℓ(w⃗t)∥)∥∇wt

ℓ(w⃗t)∥2 + η2∥∇2
wt
ℓ(w⃗t)∥σ2

)
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Telescoping the sum, the left-hand side telescopes:

E[ℓ(w⃗T )− ℓ(w⃗0)] ≤
T−1∑
t=0

(
η3Γ3ρ

6
− (η − η2∥∇2

wt
ℓ(w⃗t)∥)∥∇wt

ℓ(w⃗t)∥2 + η2∥∇2
wt
ℓ(w⃗t)∥σ2

)

E[ℓ(w⃗T )− ℓ(w⃗0)] ≤
η3Γ3ρT

6
+ η2

T−1∑
t=0

∥∇2
wt
ℓ(w⃗t)∥∥∇wtℓ(w⃗t)∥2 − η

T−1∑
t=0

∥∇wtℓ(w⃗t)∥2

+ η2σ2
T−1∑
t=0

∥∇2
wt
ℓ(w⃗t)∥

E[ℓ(w⃗T )− ℓ(w⃗0)] ≤
η3Γ3ρT

6
− η

T−1∑
t=0

∥∇wt
ℓ(w⃗t)∥2 + η2(σ2 + Γ2)

T−1∑
t=0

∥∇2
wt
ℓ(w⃗t)∥

η

T−1∑
t=0

∥∇wtℓ(w⃗t)∥2 ≤ η3Γ3ρT

6
+ E[ℓ(w⃗0)− ℓ(w⃗T )] + η2(σ2 + Γ2)

T−1∑
t=0

∥∇2
wt
ℓ(w⃗t)∥

MTmaxkg

2λℓ(w⃗0)

T−1∑
t=0

∥∇wt
ℓ(w⃗t)∥2 ≤ η2kgΓ

3ρTMTmax

12λℓ(w⃗0)
+

MTmaxkg

2ληℓ(w⃗0)
E[ℓ(w⃗0)− ℓ(w⃗T )]

+
ηkg(σ

2 + Γ2)MTmax

2λℓ(w⃗0)

T−1∑
t=0

∥∇2
wt
ℓ(w⃗t)∥

MTmaxkg

2λℓ(w⃗0)

T−1∑
t=0

∥∇wt
ℓ(w⃗t)∥2 ≤ C ′

1 + C ′
2 E
[
1−

ℓ(w⃗T )

ℓ(w⃗0)

]
+ C ′

3

T−1∑
t=0

∥∇2
wt
ℓ(w⃗t)∥

MTmax

2λℓ(w⃗0)

T−1∑
t=0

∥∇Xℓ(w⃗t)∥2 ≤ C ′
1 + C ′

2 + C ′
3

T−1∑
t=0

∥∇2
wt
ℓ(w⃗t)∥

MTmax

2λℓ(w⃗0)

T−1∑
t=0

∥∇Xℓ(w⃗t)∥2 ≤ C1 + C ′
3

T−1∑
t=0

∥∇2
wt
ℓ(w⃗t)∥

MTmax

2λℓ(w⃗0)

T−1∑
t=0

∥∇Xℓ(w⃗t)∥2 ≤ C1 + C ′
3kh

T−1∑
t=0

1

kh
∥∇2

wt
ℓ(w⃗t)∥

MTmax

2λℓ(w⃗0)

T−1∑
t=0

∥∇Xℓ(w⃗t)∥2 ≤ C1 + C2

T−1∑
t=0

∥∇2
Xℓ(w⃗t)∥

Using the result from Theorem 4.3 we have

Ta ≤
MTmax

2λℓ(w⃗0)

Ta−1∑
t=0

∥∇Xℓ(w⃗t)∥2 ≤ C1 + C2

Ta−1∑
t=0

∥∇2
Xℓ(w⃗t)∥ ■

E.6 MEMORIZATION AND LOSS GRADIENT

Proof of Theorem 4.5

Assumptions:

• Assume that the loss function ℓ is L-Lipschitz.

• Assume error stability as stated in Assumption 1.

• Assume uniform model bias as stated in Assumption 15.

• Assume generalization as stated in Assumption 14.

• Assume two samples are within an α ball of each other.

• Assume loss is bounded 0 ≤ ℓ ≤ L
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Proof

From Lemma A.2 from Ravikumar et al. (2024a) we have

Eϕ[ℓ(g
ϕ
S , z⃗i)− ℓ(gϕ

S\i , z⃗j)] ≤ mβ + (4m− 1)γ + 2(m− 1)∆ (41)

Using L-lipschitzness of the loss function we have

−L
2
∥z⃗1 − z⃗2∥2 ≤ ℓ(g, z⃗1)− ℓ(g, z⃗2)− ⟨∇z2ℓ(g, z⃗2), z⃗1 − z⃗2⟩ ≤

L
2
∥z⃗1 − z⃗2∥2

ℓ(g, z⃗1) ≤
L
2
∥z⃗1 − z⃗2∥2 + ⟨∇z2ℓ(g, z⃗2), z⃗1 − z⃗2⟩+ ℓ(g, z⃗2)

ℓ(g, z⃗1) ≤
L
2
∥α∥2 + ∥α∥∥∇z2ℓ(g, z⃗2)∥+ ℓ(g, z⃗2)

ℓ(g, z⃗j) ≤
L
2
∥α∥2 + ∥α∥∥∇ziℓ(g, z⃗i)∥+ ℓ(g, z⃗i)

Using this result in Equation 41 we have:

Eϕ[ℓ(g
ϕ
S , z⃗i)− ℓ(gϕ

S\i , z⃗j)] ≤ mβ + (4m− 1)γ + 2(m− 1)∆

Eϕ

[
ℓ(gϕS , z⃗i)− ℓ(gϕ

S\i , z⃗i)−
L
2
∥α∥2 − ∥α∥∥∇ziℓ(g

ϕ
S\i , z⃗i)∥

]
≤ Eϕ[ℓ(g

ϕ
S , z⃗i)− ℓ(gϕ

S\i , z⃗j)]

Eϕ

[
ℓ(gϕS , z⃗i)− ℓ(gϕ

S\i , z⃗i)−
L
2
∥α∥2 − ∥α∥∥∇ziℓ(g

ϕ
S\i , z⃗i)∥

]
≤ mβ + (4m− 1)γ + 2(m− 1)∆

Eϕ

[
ℓ(gϕS , z⃗i)− ℓ(gϕ

S\i , z⃗i)
]
≤ mβ + (4m− 1)γ + 2(m− 1)∆

+
L
2
∥α∥2 + ∥α∥Eϕ

[
∥∇ziℓ(g

ϕ
S\i , z⃗i)∥

]
Thus using the result from Ravikumar et al. (2024a) be we

Lmem(S, z⃗i) ≤ mβ + (4m− 1)γ + 2(m− 1)∆ +
L
2
∥α∥2 + ∥α∥Eϕ

[
∥∇ziℓ(g

ϕ
S\i , z⃗i)∥

]
mem(S, z⃗i) ≤

mβ

L
+

(4m− 1)γ

L
+

2(m− 1)∆

L
+

L
2L

∥α∥2 +
∥α∥
L

Eϕ

[
∥∇ziℓ(g

ϕ
S\i , z⃗i)∥

]
mem(S, z⃗i) ≤ C3 + C4 Eϕ

[
∥∇ziℓ(g

ϕ
S\i , z⃗i)∥

]
■

E.7 MEMORIZATION AND LOSS

Proof of Theorem 4.4

Assumptions:

• Assume that the loss function ℓ is L-Lipschitz.
• Assume error stability as stated in Assumption 1.

• Assume that the gradient estimator ∇̃wℓ is unbiased i.e., Et[∇̃wℓ(w⃗t)] = ∇wℓ(w⃗t).
• Assume bounded gradient as stated in Assumption 18.
• Assume loss is bounded 0 ≤ ℓ ≤ L

Proof

Consider Equation 33

Tza Et

[
ℓ(w⃗0)− ℓ(w⃗Tzb

)
]
= Tzb Et [ℓ(w⃗0)− ℓ(w⃗Ta

)]

Eϕ [ℓ(w⃗0)(Tza − Tzb)] = −T̂zaLmem(S, z⃗b) + T̂zbLmem(S, z⃗a)

+ Eϕ

[
Tzbℓ

\a(w⃗ ∗
S\a)− Tzaℓ

\b(w⃗ ∗
S\b)

]
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where ℓ\i(w⃗t) = Ez∈S\i [ℓ(w⃗t, z⃗)] denotes the loss function when the z⃗ th
i sample was removed

from the dataset. Let w⃗ ∗ denote such a model at convergence. Then we have

T̂za Eϕ [ℓ(w⃗0)]− T̂zb

(
Eϕ [ℓ(w⃗0)] + Eϕ

[
ℓ\a(w⃗ ∗

S\a)
])

= −T̂zaLmem(S, z⃗b) + T̂zbLmem(S, z⃗a)

− T̂a Eϕ

[
ℓ\b(w⃗ ∗

S\b)
]

(42)

Where T̂z = Eϕ[Tz], i.e. expected learning time of a sample. We get a lower bound on
T̂zb

(
Eϕ [ℓ(w⃗0)] + Eϕ

[
ℓ\a(w⃗∗)

])
using our stability relation

T̂zb

(
Eϕ [ℓ(w⃗0)] + Eϕ

[
ℓ\a(w⃗∗

S\a)
])

≥ T̂zb (Eϕ [ℓ(w⃗0)]− β + Eϕ [ℓ(w⃗
∗
S )])

Note w⃗ ∗
S ̸= w⃗ ∗

S\a . This is because w⃗ ∗
S , w⃗ ∗ are the result of optimizing on different datasets S and

S\a respectively. Thus we have

−T̂zaLmem(S, z⃗b) + T̂zbLmem(S, z⃗a)− T̂za Eϕ

[
ℓ\b(w⃗ ∗

S\b)
]
≤ T̂za Eϕ [ℓ(w⃗0)]

− T̂zb (Eϕ [ℓ(w⃗0)]− β + Eϕ [ℓ(w⃗
∗
S )])

T̂zbLmem(S, z⃗a)− T̂a Eϕ

[
ℓ\b(w⃗ ∗

S\b)
]
≤ T̂za Eϕ [ℓ(w⃗0)]− T̂zb (Eϕ [ℓ(w⃗0)]− β + Eϕ [ℓ(w⃗

∗
S )])

+ T̂zaLmem(S, z⃗b)

T̂zbLmem(S, z⃗a) ≤ T̂za Eϕ

[
ℓ\b(w⃗ ∗

S\b)
]
+ T̂za Eϕ [ℓ(w⃗0)]− T̂zb (Eϕ [ℓ(w⃗0)])

− T̂zbβ + T̂zb Eϕ [ℓ(w⃗
∗
S )] + T̂zaLmem(S, z⃗b)

Since the loss is bound and mem ≤ 1 we have

T̂zbLmem(S, z⃗a) ≤ T̂zaL+ T̂zaL− T̂zb (Eϕ [ℓ(w⃗0)])− T̂zbβ + T̂zb Eϕ [ℓ(w⃗
∗
S )] + T̂zaL

T̂zbLmem(S, z⃗a) ≤ 3T̂zaL− T̂zb (Eϕ [ℓ(w⃗0)])− T̂zbβ + T̂zb Eϕ [ℓ(w⃗
∗
S )]

≤ 3T̂zaL− T̂zbβ + T̂zb Eϕ [ℓ(w⃗
∗
S )− ℓ(w⃗0)]

≤ 3T̂zaL− T̂zbβ + T̂zb

∗∑
t=0

Eϕ [ℓ(w⃗t+1)− ℓ(w⃗t)]

≤ 3T̂zaL− T̂zbβ + T̂zb

∗∑
t=0

Eϕ [ℓ(w⃗t+1)]− T̂zb

∗∑
t=0

Eϕ [ℓ(w⃗t)]

If the loss estimation using a single sample has a variance σl, then using the Chebyshev inequality
with a confidence of 1− δ

T̂zbLmem(S, z⃗a) ≤ 3T̂zaL− T̂zbβ + T̂zb

∗∑
t=0

Eϕ [ℓ(w⃗t+1)]− T̂zb

∗∑
t=0

(
Eϕ [ℓ(w⃗t, z⃗a)]−

σl√
δ

)

≤ 3T̂zaL− T̂zbβ + T̂zb

∗∑
t=0

Eϕ [ℓ(w⃗t+1)]− T̂zb CSL(z⃗a) + T̂zb

σl√
δ

From Theorem 4.1, T̂za depends on memorization given by

T̂za ≤
T̂refL

Eϕ [ℓ(w⃗0)]

(
mem(S, z⃗a) + 1 +

2σl

L
√
δ

)
+ T̂ref
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T̂zbLmem(S, z⃗a) ≤ 3L

(
T̂refL

Eϕ [ℓ(w⃗0)]

(
mem(S, z⃗a) + 1 +

2σl

L
√
δ

)
+ T̂ref

)
− T̂zbβ

+ T̂zb

∗∑
t=0

Eϕ [ℓ(w⃗t+1)]− T̂zb CSL(z⃗a) + T̂zb

σl√
δ

T̂zbLmem(S, z⃗a) ≤
3L2T̂ref

Eϕ [ℓ(w⃗0)]
mem(S, z⃗a) +

3L2T̂ref

Eϕ [ℓ(w⃗0)]
+ 3LT̂ref − T̂zbβ

+ T̂zb

∗∑
t=0

Eϕ [ℓ(w⃗t+1)]− T̂zb CSL(z⃗a) + T̂zb

σl√
δ
+

6T̂refLσl

Eϕ[ℓ(w⃗0)]
√
δ

T̂zb CSL(z⃗a)− T̂zb

σl√
δ
≤

(
3L2T̂ref

Eϕ [ℓ(w⃗0)]
− T̂zbL

)
mem(S, z⃗a) +

3L2T̂ref

Eϕ [ℓ(w⃗0)]
+ 3LT̂ref

− T̂zbβ + T̂zb

∗∑
t=0

Eϕ [ℓ(w⃗t+1)] +
6T̂refLσl

Eϕ[ℓ(w⃗0)]
√
δ

T̂zb CSL(z⃗a)−

(
T̂zb +

6T̂refL

Eϕ[ℓ(w⃗0)]

)
σl√
δ
−

3L2T̂ref

Eϕ [ℓ(w⃗0)]
− 3LT̂ref + T̂zbβ − T̂zb

∗∑
t=0

Eϕ [ℓ(w⃗t+1)] ≤(
3L2T̂ref

Eϕ [ℓ(w⃗0)]
− T̂zbL

)
mem(S, z⃗a)

Let T̂zb = T̂ref . Thus we have

T̂ref CSL(z⃗a)−

(
T̂ref +

6T̂refL

Eϕ[ℓ(w⃗0)]

)
σl√
δ
−

3L2T̂ref

Eϕ [ℓ(w⃗0)]
− 3LT̂ref + T̂refβ − T̂ 2

ref ℓ(w⃗
∗) ≤(

3L2T̂ref

Eϕ [ℓ(w⃗0)]
− T̂refL

)
mem(S, z⃗a)

This result comes from the lower bound established on the loss at each iteration. Now divide each
size by T̂ref

CSL(z⃗a)−
(
1 +

6L

Eϕ [ℓ(w⃗0)]

)
σl√
δ
−

3L2

Eϕ [ℓ(w⃗0)]
− 3L+ β − T̂ref ℓ(w⃗

∗)L ≤(
3L2

Eϕ [ℓ(w⃗0)]
− L

)
mem(S, z⃗a)

This we have

C5 (CSL(z⃗a)− C6 + C7) ≤ mem(S, z⃗a) ■

Where C6 is the lower bound on the loss at each step, thus the term CSL−C6 estimates how far
each step’s loss is from the lower bound. And C7 is the total estimation error. C5 is a scaling term
to bring the result in the correct range.

C5 =
1(

3L2

Eϕ [ℓ(w⃗0)]
− L

) (43)

C6 = T̂ref ℓ(w⃗
∗) (44)

C7 =

(
β −

3L2

Eϕ [ℓ(w⃗0)]
− 3L−

(
1 +

6L

Eϕ [ℓ(w⃗0)]

)
σl√
δ

)
(45)
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